Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach

نویسندگان

  • Jason Pacheco
  • Erik B. Sudderth
چکیده

Variants of max-product (MP) belief propagation effectively find modes of many complex graphical models, but are limited to discrete distributions. Diverse particle max-product (D-PMP) robustly approximates max-product updates in continuous MRFs using stochastically sampled particles, but previous work was specialized to treestructured models. Motivated by the challenging problem of protein side chain prediction, we extend D-PMP in several key ways to create a generic MAP inference algorithm for loopy models. We define a modified diverse particle selection objective that is provably submodular, leading to an efficient greedy algorithm with rigorous optimality guarantees, and corresponding maxmarginal error bounds. We further incorporate tree-reweighted variants of the MP algorithm to allow provable verification of global MAP recovery in many models. Our general-purpose MATLAB library is applicable to a wide range of pairwise graphical models, and we validate our approach using optical flow benchmarks. We further demonstrate superior side chain prediction accuracy compared to baseline algorithms from the state-of-the-art Rosetta package.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Worst-case Optimal Submodular Extensions for Marginal Estimation

Submodular extensions of an energy function can be used to efficiently compute approximate marginals via variational inference. The accuracy of the marginals depends crucially on the quality of the submodular extension. To identify the best possible extension, we show an equivalence between the submodular extensions of the energy and the objective functions of linear programming (LP) relaxation...

متن کامل

Submodular Point Processes

We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...

متن کامل

From MAP to Marginals: Variational Inference in Bayesian Submodular Models

Submodular optimization has found many applications in machine learning andbeyond. We carry out the first systematic investigation of inference in probabilis-tic models defined through submodular functions, generalizing regular pairwiseMRFs and Determinantal Point Processes. In particular, we present L-FIELD, avariational approach to general log-submodular and log-supermodul...

متن کامل

On the Complexity of Submodular Function Minimisation on Diamonds

Let (L;⊓,⊔) be a finite lattice and let n be a positive integer. A function f : L → R is said to be submodular if f(a ⊓ b) + f(a ⊔ b) ≤ f(a)+f(b) for all a, b ∈ L. In this paper we study submodular functions when L is a diamond. Given oracle access to f we are interested in finding x ∈ L such that f(x) = miny∈Ln f(y) as efficiently as possible. We establish • a min–max theorem, which states tha...

متن کامل

Bethe Bounds and Approximating the Global Optimum

Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015